
Asynchronous Optimistic Rollback Recovery
Using Secure Distributed Time

Sean W. Smith, David B. Johnson, J.D. Tygar
March 1994

CMU-CS-94- 130

School of Computer Science
Camegie Mellon University

Pittsburgh, PA 15213

Accesion For
NTIS CRA&I

DTIC TAB

DTIC Unannounced [
0 1 0Justification

SELECTE BySMAY 0 619941 Dis~t. i~bu-tio-n"I
MAY 1994 D- Availability Codes

Avail and I or
Dist Special

© 1994 S.W. Smith, D.B. Johnson, J.D. Tygar

This research was sponsored by the Avionics Laboratory. Wright Research and Development Center. Aeronautical Systems
Division (AFSC). U. S. Air Force. Wright-Patterson AFB. OH 45433-6543 under Contract F33615-90-C-1465. Arpa Order No.

7597. and by the Advanced Research Projects Agency. Information Science and Technology Office. under the title "Research on

Para!lel Computing," ARPA Order No. 7330, issued by ARPA/CMO under Contract MDA972-90-C-0035. Additional support was

provided by NSFGrant CCR-8858087. by matching funds from Motorola and TRW. and by the U.S. Postal Service. The authors are

grateful to IBM for equipment to support this research. The first author also received support from an ONR Graduate Fellowship.

The views and conclusions contained in this documeiit are those of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the U.S. Government.

Keywords: Distributed systems, concurrency, security and protection, checkpoint/restart, fault toler-
ance

Abstract

In an asynchronous distributed computation, processes may fail and restart from saved state. A protocol

for optimistic rollback recovery must recover the system when other processes may depend on lost states

at failed processes. Previous work has used forms of partial order clocks to track potential causality. Our

research addresses two crucial shortcomings: the rollback problem also involves tracking a second level

of partial order time (potential knowledge of failures and rollbacks), and protocols based on partial order

clocks are open to inherent security and privacy risks. We have developed a distributed time framework that

provides the tools for multiple levels of time abstraction, and for identifying and solving the corresponding

security and privacy risks. This paper applies our framework to the rollback problem. We derive a

new optimistic rollback recovery protocol that provides completely asynchronous recovery (thus directly

supporting concurrent recovery and tolerating network partitions) and that enables processes to take full

advantage of their maximum potential knowledge of orphans (thus reducing the worst case bound on

asynchronous recovery after a single failure from exponential to at most one rollback per process). By

explicitly tracking and utilizing both levels of partial order time, our protocol substantially improves on

previous work in optimistic recovery. Our work also provides a foundation for incorporating security and'

privacy in optimistic rollback recovery.

1. Introduction

Optimistic rollback recovery allows distributed application programs to recover from the failure of one

or more processes. Optimistic rollback recovery protocols have low failure-free overhead, but previcusly

either required synchronization during recovery, or permitted (in the worst case) exponential rollbacks in

order to recover from a single failure. We have developed a distributed time framework that provide tools

for tracking multiple levels of temporal relations in a distributed computation. In this paper, we use this

framework to build a simple protocol for optimistic rollback recovery that allows completely asynchronous

recovery, with at most one rollback per process to recover from any failure. Furthermore, protocols, such

as those for optimistic rollback recovery, that track partial order time are subject to inherent security and

privacy risks. Our distributed time framework in which we developed the protocol provides a basis to

systematically identify and protect against these risks

The Recovery Problem Consider a distributed system consisting of processes that pass messages

asynchronously. (To allow for full generality, we will assume nothing about the reliability of the network or

the order of message delivery.) Suppose process p fails and recovers by restarting itself at an earlier, saved

state. All activity by process p since it first passed through this restored state has been lost.

If the execution of the lost activity affected no process other than p, then the loss of this activity can

affect no process except p. Suppose the lost activity had been entirely internal to p. or had included only the.

receipt of messages (if messages are not acknowledged and could be lost). Process p's failure and recovery

will not hinder the overall computation.

However, suppose the lost activity at process p included the send of a message that was received by

process q. Then the state of process q depends on activity at process p that has been rolled back. Process q

has received a message that, in process p's view after recovery, was never sent. Distribution and asynchrony

may make the situation even more complex. For example, if process q subsequently sends a message to

process r, then process r also depends on events that never happened. Further, the lost activity at process 1)

may include the send of a message to process r that, due to network delays, does not arrive until after p has
rolled back and the system appears to have recovered.

The challenge of rollback recovery consists of correctly recovering the system when a failed process

restarts an earlier state. Pessimistic rollback protocols (e.g., [BBG83, BBGH89, EIZw92. PoPr831) prevent

processes from acquiring depei.dencies on states that may become lost if a process fails. However, pessimism

take a significant toll on performance [Jo891. Optimistic rollback protocols (e.g., [BhLi88, Jo89. JoZw90,

Jo93, KoTo87, PeKe93, SiWe89, StYe85I) optimistically bet that processes will not lose state, but then must

consider the challenge of recovering the system when non-faulty processes may depend on lost states at the

failed process.

The Security Problem Optimistic recovery requires determining which states depend on lost states.

Existing protocols use partial order time [La7g, Fi9 1, Ma89J to track this dependency, frequently employing

variations on vector clocks [Fi88, Ma89]. However, tracking temporal relations different from real physical

time creates security and privacy risks-whether or not a protocol is explicit about these relations [SmTy9l,

ReGo93, SmTy93]. A malicous process can disrupt the vector clock protocol by transmitting nonsense

entries, or by more subtly altering its vector entries to fool honest processes into falsely believing temporal

precedence (or concurrence) occurs when it does not. Even without active sabotage, a malicious process

can exploit the private information shared in each timestamp vector to gain knowledge of other process's

activities.

Attacks on partial order clocks translate to attacks on protocols built on these clocks. For example,

during optimistic rollback recovery, a malicious process can cause honest processes to make incorrect

decisions about whether they need to roll back.

Our Solutions Many problems in distributed systems depend on temporal relations more general than the

linear order of real time, but tracking these relations creates security and privacy risks. We have addressed

these issues by developing a distributed time framework {Sm93,Sm941 that provides tools to reason about

multiple levels of time relations, to design protocols in terms of these relations, and to independently

consider the inherent security and privacy risks.

In this paper, we use this framework to build a new optimistic rollback recovery protocol. The heart*

of the protocol is a simple procedure for processes to determine exactly when a given state depends on a

lost state. The design and the correctness of this procedure follow directly from explicitly tracking both

the partial order of causal dependency and the partial order of rollback knowledge. The completeness of

this procedure (it reports no false negatives) allows completely asynchronous recovery while also ensuring

each process rolls back at most once to recover from any failure. Our protocol thus substantially improves

on previous optimistic rollback recovery protocols. Further, our distributed time framework provides a

systematic way to add a level of security and privacy to any protocol that explicitly uses partial order time.

This framework grants our recovery protocol an extra level of security since it is explicit about the multiple

levels of partial order time involved.

This Paper Section 2 discusses asynchrony in optimistic rollback recovery. Section 3 presents the

preliminaries ot rollback and the use of our distributed time framework. Section 4 discusses the central role

that orphans have in rollback protocols, and uses the distributed time tools to develop an optimal test for

orphans. Section 5 uses this test to build the our new protocol. Section 6 discusses some security issues

inherent in any protocol tracking nonlinear time, and Section 7 presents our conclusions.

2. Asynchronous Recovery

The more decentralized a distributed protocol is, the better it exploits the advantages of distribution (e.g.,

concurrency) and ihe more robust it is against the disadvantages (e.g., asynchrony, unreliable networks).

Thus, in theory, the more decentralization a protocol brings to the task of optimistic rollback recovery, the

better performance it achieves. In practice, getting asynchronous recovery to perform well is difficult.

Previous Approaches Strom and Yemini [StYe85l opened up the area of optimistic rollback recovery

and presented a protocol that allows processes to recover mostly asynchronously. (Certain situations can

require recovering processes to block.) However, their protocol assumes FIFO channels and deterministic

processes. Their protocol also suffers from the drawback that, in the worst case, a single failure at one

process can cause 0(2") rollbacks at another process. (Sistla and Welch [SiWe891 cite 0(2'); we have a

simple construction showing Q(2').)

To avoid these problems, subsequent work moved away from completely asynchronous recovery. Koo

and Toueg [KoTo87I introduced a protocol based on two-phased commit. Bhargava and Lian [BhLi88] pre-

sented a synchronized recovery protocol that introduces some concurrency into recovery (and thus tolerates

concurrent failures). Leu and Bhargava [LeBh88J dispensed with FIFO message orderong, and presented

a synchronized protocol that introduces some concurrency into recovery and allows some toleration of

network partition. Johnson and Zwaenepoel [Jo89, JoZw90] used state lattices from partial order time to.

show that a maximal recoverable system state exists, and present synchronized protocols to recover this

state. Peterson and Kearns [PeKe93J recently presented a recovery protocol that uses vector clocks and

synchronizes by passing tokens.

Asynchronous Recovery using Distributed Time The technique of using partial order time to

track potential causality in a distributed system is well known. Rollback recovery requires determining

which states have been potentially influenced by a lost state. Consequently, existing protocols use some

form of partial order time (either implicitly or explicitly) to track this potential dependence. However, by

dispensing with formal coordination, asynchronous rollback recovery requires being able to reason about

and track potential knowledge of failures and restarts. This activity itself is an asynchronous distributed

computation, and thus also trackable using partial order time.

However, this partial order differs from the partial order of events visible within the user's computation.

For rollback recovery, potential knowledge is not the same as causal dependency. For example. suppose

process q learns that its current state A depends on a lost state. Process q rolls back. and then enters state

B. A knowledge path exists from state A to state B. but no causal deliendency path exists.

Thus, to effectively implement asynchronous recovery, we need not only to move from viewing time as

a linear order to viewing it as a partial order, but also to move away from viewing time as a single level of

abstraction. Our framework of distributed time provides these tools, and allows us to build a new protocol

that cleanly and elegantly solves the asynchronous recovery problem. Distributed time enables us to define

when a state can be known to depend on a lost state, and to implement a test within the protocol that fully

utilizes this potential knowledge.

Our new recovery protocol improves on previous work in optimistic rollback recovery in that it is the

first protocol to effectively implement completely asynchronous recovery. It also compares favorably in

many other aspects. We discuss some of the advantages:

Complete Asynchrony A failed process can restart immediately. When a process needs to roll back, it

can roll back immediately and resume computation with no additional synchronization.

Minimal Rollbacks A failure at process p will cause process q to roll back at most once-and only when

process q causally depends on rolled-back state at process p.

Speedy Recovery Suppose process q needs to roll back because of a failure at process p. Process q will

roll back as soon as any knowledge path is established from p's restart.

Concurrent Recovery Recovery from a failure occurs as knowledge of the failure propagates. Basing

recovery on knowledge rather than coordinated rounds directly allows recovery from concurrent

failures to procede concurrently. (In particular, two processes that each need to roll back due to two

failures do not need to react to the failues in the same order.)

Toleration of Network Partitions Another side-effect of our asynchronous approach is that recovery

can proceed despite a partitioned network. The only processes that need to worry about recovery are

those that may causally depend on lost states. Since each such process can recovery asynchronously.

the processes on the same side of the network as the failure can recover immediately. Processes on

the other side that need to recover can do so when the network is reunited. The remaining processes

on either side can proceed unhindered.

A Framework for Security and Privacy Tracking partial order time relations creates security and pri-

vacy risks, since processes must share and trust private information. By building our protocol in terms

of distributed time, we can transparently protect the protocol against these risks.

Our new protocol does require more timetamp information to be maintained, since two partial orders must be

tracked simultaneously-but this bound is linear and thus is comparable to previous protocols that explicitly

use vector time.

Orthogonal Issues A number of issues arise in our research that do not lie within the scope of this

paper. We will not consider mechanisms for processes to detect failure, and for failed processes to migrate

to non-faulty sites. We also make the simplifying assumption that processes restore state by retrieving

a checkpoint from stable storage (although balancing checkpointing with message logging may provide

better performance). We also do not worry here about committing output to the outside world. (Integrating

checkpointing/logging techniques with our approach is an avenue for future work.)

3. Rollback and Distributed Time

3.1. Preliminaries

Partial order time provides a natural description of an asynchronous distributed computation. We consider

a state interval as the fundamental unit of experience at a process. For a given computation, we build the

partial order on state intervals in three steps. First, we can organize the state intervals at any one process

into a linear sequence. We then link these timelines according to message traffic: if process p during p's

state interval A sends a message which process q receives during q's state interval B, we let .4 precede B.

Finally, we obtain the partial order by taking the transitive closure of this relation.

In a failure-free computation, this partial order expresses potential causal dependency. However, failure

disrupts this dependency. When a process fails and restarts, it restores an earlier state and rolls back the

states that previously had followed the restored state. Thus, the ability to fail and restart partitions the states

at a process into sets: those that have been rolled back and those that are live.

Suppose states A, B, C, and D occur in that order at process p. Process p fails, restores .-. and then

begins a new state E. State A is the logical predecessor of state E; the live history of E includes A., but

none of B, C, D.

To formalize this convention, Strom and Yemini partition the live history at a process into incarnati ons.

the intervals from each restart to the subsequent failure. Incarnations are numbered sequentially at a process;

restart begins a new incarnation. Suppose the rollback in the above example was the first one at process p.

The interval up to and including state D constitutes the first incarnation at process p; the interval from the

restarted A to E (and on the next failure) constitutes the second incarnation.

A state is invalid when it causally depends on two states at a process that could not both have been part

of the live history at that process. In the above example, if state F at process q depends on state E at process

p, then depending on state C at process p as well would make state F invalid. We assume that processes

enforce the invariant that they never let their own state become invalid. (Later we will return to this topic.)

3.2. Using the Distributed Time Framework

3.2.1. Motivation

Distributed systems need distributed time. The linear order of real time is not sufficient (and is generally not

observable). Frequently a more general relation also does not suffice, since multiple levels of abstraction

require multiple levels of temporal relations. The framework of distributed time [Sm93I provides these tools.

Distributed time represents computations as computation graphs, represents the full physical description of

system traces as ground-level computation graphs, and uses time models to systematically transform graphs

to the appropriate level of abstraction. Vector time is a special case of distributed time; the crucial difference

for rollback recovery is that the modularity of distributed time easily supports multiple levels of time, which

is the key to completely asynchronous recovery.

One Level is Insufficient Partial order time tracks causal dependence for failure-free computations. For

any state A, we can tell whether state A potentally influenced some state B by examining their relation in the

partial order. However, when failures and optimistic rollback recovery actually occur, this correspondence

fails:

"* This model places all states at a process in a linear sequence, which does not express the details of

incarnations or live histories.

"* This model regards all messages as carrying causal dependence. Messages exchanged as part of the

recovery protocol (which should not carry dependence) are lumped in with the dependence-carrying

messages of the application program.

A further complication is that in order to implement a recovery protocol, processes may need to perform

recovery-managing computation that should not be considered part of the computation being recovered.

Dire•t!y applying partial order time loses this distinction.

What is needed is an abstraction from the single level of partial order time.

3.2.2. Two Levels of Time

Two Levels of Abstraction Using a partial order to describe a computation implies abstraction: we

neither know nor care which total order schedule actually occurred. Providing virtual failure-free com-

putations through rollback recovery allows this abstraction to proceed indirectly-at the highest level, we

neither know nor care whether the virtual failure-free computation was in fact failure-free. The problem of

rollback recovery introduces two relevant levels of abstraction:

• The user level is the computation that is failing and being recovered. (Failures and recoveries are not

visible to the user.)

* The system level is the fault-tolerant implementation of this computation using rollback recovery.

Two Levols of Computton Performing recovery may require computation not part of the user com-

putation. T.., distinction gives processes a bipartite form: the system process (all state at the process)

implements the user process (the subset of that state visible by the user computation).

This distinction introduces two corresponding types of state at processes, user state and system state.

We will indicate user states with letters from the beginning of the alphabet, and system states with letters

from the latter part of the alphabet (from Q on). We will use the letters G and ft when the level does not

matter.

The subset relation on states establishes a correspondence. Each system state Q has a well-defined

"current" user state, which we indicate QU- Each user state A corresponds to at least one system state. We

use AS to indicate any such system state.

All messages exchanged in the system are. by definition, system messages. A message +1l sent by the

user level of a process has two characterizations. If the user level of the destination process actually receives

.11, then M is also a user message. (That is, user messages are carried by system messages.) If the system

level of the destination process receives .1 but does not forward it to the user level, then .11 is a system

message only.

Two Levels of Time We build two levels of partial order time to reflect the two levels of computation..

We construct system partial order time (SYSTEM -TIME) by taking the linear sequence of system states at

a process, linking them with system messages, and taking the transitive closure.

Constructing user partial order time (USER- TIME) is similar, except the local structure generated at a

process is a tree instead of a linear sequence. To build the user tree for a process, we put successive states

in successive order-until rollback.

Rollback restores a previous user state. Suppose the process is in system state Q before rollback. After

rollback, the process enters a special restart system state R., whose user state RU does not follow QU, but

instead is a copy of an earlier user state A that user-precedes QU" The next user state becomes a new child

of A. Rollback thus terminates the current branch in the user tree, and grows a new branch from an earlier

state. In the user tree at a process, every branch but one represents a failed and rolled-back part of the

computation. (The remaining branch represents the computation currently live.) The leaves of a process

tree are the states that have no logical successors (either maxi,.ial lost states, or the last state executed). The

path from the root to a state A is the local live history of A.

In the USER- TIME model of the example of Section 3.1. states .A through D are placed in sequen-

tial order, but after the failure/restart, state E is placed as another successor to state .4, and subsequent

computation extends from E.

Thus, using a tree as a "timeline" differs considerably from a traditional linear timeline. In a linear

timeline, two states A $ B at the same process have two possible relations: either A precedes B or B

precedes A. However, the user tree at a process admits a third relation: concurrency. If states A and B lie

in different branches of the user tree at a process, then neither could have preceded the other. When one

occurred, the other never occurred and never was going to occur.

To construct the full USER TIME order, we link the user trees for each process by letting each receive

of a user message follow its send, and then taking the transitive closure.

We indicate precedence between states by arrows (G - H) and precedence or equivalence by under-

scored arrows (G - H).

The definitions immediately provide that system precedence follows from user precedence:

Theorem 1 Let A and B be user states in a computation. For any state BS there exists a

state AS such that: A - B in USER -TIME =* AS - BS in SYSTEM - TIME.

Vector Clocks The vector clock mechanism tracks relations in a standard partial order (such as

SYSTEM- TIME) by equipping each state G with a timestamp vector V(G) that has one entry per process.

with the property that the process p entry in V(G) is the maximal state H at process p with 11 - G.

Processes track these vectors incrementally: if state G2 directly follows state (;, at process q. process q

obtains V(G 2) from V(GI) as follows. Process q advances its own entry in V(G,) to obtain interim vector

11. If G-) is a not a receive, then process q sets V(G 2) to W. If G2 is a send, process q sends V((;,) along

with the message. If G2 is a receive, process q strips off the timestamp vector X from the message, and sets

V(G 2) to be the entry-wise maximum of II' and X.

Such vectors form a partial order based on the ordering of events at a process. Vector V precedes %.ector

W when for each process p, the p entry of V precedes or equals the p entry of lV in the execution order at

p, but for some process, this inequality is strict. We write V -< VI to indicate vector precedence.

Vector Clocks for System Time Since SYSTEM- TIME is a standard partial order model, we can use

vector clocks to track system precedence. We write Vy,((2) to indicate the SYSTEM- TIME timestamp

vector of a system state Q, -<,y, to indicate SYSTEM- TIME vector precedence, and maxy, to indicate

entry-wise SYSTEM - TIME vector maximization.

Vector Clocks for User Time Using vector clocks to track USER -TIME is complicated by the fact

that processes order local states into trees rather than linear sequences. However, the set of user states at a

given process that user-precede a given user state are totally ordered within the tree at that process.

"Theorem 2 Let B be a valid user state, and let p be a process (but not necessarily the one

where B occurred). Let S be the set of all user states A at p such that A - B in USER - TIME.

If S is nonempty, then S has a unique USER -TIME maximum.

As a consequence, the notion of timestamp vector is well-defined for valid user states. Thus we can use

vector clocks to track USER- TIME as well. We write Vu, (A) to indicate the USER_ TIME timestamp

vector of a user state A, "<usr to indicate USER- TIME vector precedence, and maxusr to indicate entry-wise

USER- TIME vector maximization. (However, since the local ordering (used in vector precedence and

maximization) derives from the user trees, mere integers will not suffice for vector entries. Section 5.2

considers these issues further.)

Validity The system level of a process can insure its user state never becomes invalid, simply by never

accepting an incoming user message whose user timestamp has an entry that is not user-comparable with the

corresponding entry of the process's current user timestamp. (We shall show shortly that there is a simpler

way of obtaining this assurance.)

4. Orphans

An orphan is a state in a computation that causally depends on a state that has been lost. In terms of our

time models, an orphan is a user state A such that some rolled-back user state B exists with B - .4 in'

USER- TIME.

This section discusses the central roll orphans play in optimistic rollback recovery in general, and

asynchronous approaches in particular. This section then uses distributed time to characterize when a

process can potentially know that a state is an orphan, and then to build a simple test that achieves this

potential.

4.1. Orphans and Optimistic Recovery

A process p that initiates a recovery (that is, the process that actually fails) recovers by restoring earlier

state and continuing user-level execution. This action causes one or more live states at process p to become

rolled-back. The new rolled-back events are orphans by definition. However, the rollback action at p may

also cause some states at other processes to become orphans.

The key to optimistic rollback recovery is the ability for processes to know when states have become

orphans. This has two aspects:

Orphan Elimination When process q receives notification that process p has failed, process q needs to

determine if its current user state has become an orphan. If so, process q needs to roll back-preferably

back to the most recent state that is now not an orphan. Processes thus need to be able to test if their

own user states are orphans.

Orphan Preveintion The lost state at process p may have caused user state A at some process r to become

an orphan. However, suppose user state A was the send of a message to process q. If process q user-

accepts the message (whenever it arrives), then process q will become an orphan. Thus, to prevent

becoming orphans, processes need to be able to test if user states at other processes are orphans.

Accurately testing for orphans is especially critical for asynchronous recovery, with multiple failures

and minimal coordination.

4.2. Knowledge of Orphans

When can a process at system state Q know that a user state A is an orphan? We use distributed time to

answer this question.

First, to even ask this question, state Q must know about state A. We must have the precondition that

AS - Q in SYSTEM_ TIME, for some AS.

For A to be an orphan, a rolled-back state B must exist with B - A in USER - TIME. From Theorem I

and transitivity, BS - Q in SYSTEM- TIME for some BS. Thus, state Q can know about B.

However, for Q to know that A is an orphan, it must know that state B has been rolled back and is no

longer part of the local live-history history at state B's process. If R is the restart system state following-

B's rollback, then we must have R I Q in SYSTEM- TIME as well.

We summarize this formally with the predicate ORPHAN(A. Q), which is defined only when I S - -

in SYSTEM_ TIME for some AS. {I. B - .4 in USER -TIME

ORPHAN(A, Q) = true 3 B. R such that 2. R I Q in SYSTEM -TIME

3. R is a restart state rolling back B

The ORPHAN predicate does not capture all the orphans in the computation-just all the orphans that a

given process can know are orphans. If process p sends process q a user message but promptly rolls back

without telling anyone, then q can not know that the send is an orphan. In SYSTEM- TIME, the timestamp

vector on a state Q marks the information horizon of that state. State Q can not know about anything beyond

this horizon-indeed, runs of the system could exist where every process pauses indefinitely after executing

their V~y.((Q) entry.

4.3. Testing for Orphans

We can use distributed time to build a test that exactly captures the ORPHAN predicate.

Let Q be a system state, and let A be a user state with AS Q in SYSTEM -TIME, for some AS.

Let R be the maximal system state at process p that state Q knows about. Then RU must be live (to

Q's knowledge), because a restart state rolling back RU would system-follow R--contradicting the choice

of R.

Indeed, to Q's knowledge, only those user states C at process p with C - RU in USER -TIME can

be part of the live history at process p.

So, let A be a user state that Q knows about. Let C be the user-maximal user state at process p with

C - A in USER- TIME. If C - RU in USER- TIME, then no restart at p that Q knows about makes

A an orphan. If this relation holds for all processes, than Q must conclude that A has not been rolled back.

Otherwise Q knows that A is an orphan.

Vector clocks permit an elegant statement of this test. For a vector W of system states, let 1W1,U be the

vector of user states obtained by taking the user part of each entry. Define the DT_ ORPHAN test by:

DTORPHAN(A,Q) = true = Vusr(A) 2usr Vsys(Q)u

That is, take the user timestamp of A, the system timestamp of Q, and do a USER- TIME vector comparison.

This test captures all potential knowledge of orphans.

Theorem 3 Suppose user state A and system state Q satisfy AS - Q in SYSTEM.- TIME,

for some AS. Then ORPHAN(A. Q) - DT_ ORPHAN(A. Q).

By not transitively propagating knowledge of orphans, Strom and Yemini use a strictly weaker orphan

test. Their protocol never falsely concludes that a non-orphan state is an orphan. However, their protocol will

falsely conclude that some orphan states are not orphans---even when the testing process could potentially

know otherwise. These false negatives make it possible for a single failure at one process to cause another

process to roll back Q(2f) times, since the unfortunate process never rolls back far enough (until the last

time).

Examples Figure I demonstrates using the DTORPHAN test for orphan elimination and orphan pre-

vention. The figure shows the USER. TIME partial order for a computation on three processes. Dashed

arrows indicate SYSTEM. TIME precedence on corresponding system states, and Q is the sole system state

for B5 and R is the sole system state for C6. Process p fails after :A4, rolls back to A4,, then executes .45,

and finally sends a system message to process r. Process r then rolls back to C1, executes C4 and C5, and

sends a system message to process q.

A, A2 A3 = A4 A 5 '

A , VI A 2 C3• C4 C5..

r

V.., (B3) V' (R)

A I A 2 A3 ~ A 4 A5
p

q

r

Figure 1 The DT_ ORPHAN test allows processes both eliminate and prevent orphans. In
the top illustration, process q uses the DTORPHAN test at B5/Q to deduce that state B2
is an orphan; in the bottom illustration, process r at ('6 uses the DT- ORPHAN test to reject
the user message that just arrived from B3. In both cases, user-precedence fails on the p
entries of the vectors.

5. The Distributed Time Rollback Recovery Protocol

5.1. The Protocol

We build our protocol for optimistic rollback recovery by having the system processes maintain vector

clocks for USER- TIME and SYSTEM- TIME, and use these clocks to test for orphans.

Sending a User Message Suppose process p in system state S decides to se, -r message Ml to

process q. System process p sends a system message containing M to the system p, at q.

Sending a System Message When the system process at p sends a system message M to the system

process q, it sends along the timestamp Vsys(S) (where S is the current system state at p). If M is a

forwarded user message, then p includes the timestamp Vusr(SU). If M is exclusively a sy-',m message,

then including the Vusr vector is optional.

/* the orphan test *1
function DT_ ORPHA N(TESTED - STATE, TESTING - STATE)

if Vusr(TESTED- STATE) _<usr V.y.(TESTINGSTATE)U

then return false
else return true

/* receive system message M sent in system state S */
procedure RECEIVE(M)

/* update SYSPOT vector*/

Vsy.(CURRENT)- V.y,(CURRENT) max%,. V,•,(S)

if DT_ ORPHAN(CURRENTU, CURRENT)
then rollback to maximal non-orphan

if DTORPHAN(SU, CURRENT)
then inform the sender (optional)

else if M contains a user message
then

/* update the USRPOT vector*/
Vur(CURRENTU)-V.Vr(CURRENTTj) maxur Vusr(SU)

accept user message

Figure 2 In the distributed time protocol, a system process rolls itself back if its user state
has become an orphan, and then accepts a user message only if its send is not an orphan.

(Let CURRENT be the current event at the executing process.)

Receiving Messages Figure 2 shows the procedure used for receiving messages. Suppose process

p receives a system message M sent by q at S. The system process updates the current Vsy, vector. If

a comparison of the process's current Vusr and Vsy, vectors indicates the current user state is an orphan,

the system process rolls itself back. If a comparison of the USER TIME vector on the message with the

process's current Vys vector indicates the message's send is an orphan, the system process considers telling

q about this. Otherwise, if M contains a user message, the system process forwards it to its user process.

(Suppose the send of a user message M user-followed from state A at process r, but process p's current

user state depends on B at r, with A and B user-concurrent. At least one of A, B must have been rolled

back, and the system timestamp on M will cany that information if p doesn't already know it. Thus, this

protocol automatically enforces the invariant that user states are always valid.)

Rollback To roll back because of its own failure, a process restores a state in its live history and creates

new incarnation.

To roll back because it discovers it's an orphan, a process needs to find a state in its live history that

is not an orphan-that is, a state whose Vusr timestamp still USER_- TIME-precedes the current V1y• vector.

Clearly the initial state is not an orphan, and clearly once a user state is an orphan, subsequent user-states

are orphans. Thus, for a given value of Vy,, there exists a unique USER.TIME-maximal state in the live

history that is not an orphan.

How quickly the system recovers depends on how quickly the processes that are (or may become)-

orphans learn of the restart.

5.2. Implementation Issues

For processes to track SYSTEM- TIME and USER. TIME, we need to use state labeling at processes that

allows comparison both in the system timeline and user tree. We show some sample labeling schemes.

System Timeline We can order states in the system timelines by index pairs after Strom and Yemini.

We label each system state at process p with two integers: the incarnation index and the state index. Both

are initially 1. If the state following [i, j is not a restart state, we label it (i.j + 11. If the state following

[i,j] is a restart state restoring the state [i', k], then we label it [i + 1. k].

Lexigraphic order sorts system states at a each process. If system state A has index pair [i.j] and .-'

has [i',j'], then A -<y, A' iff(i < i') v (i = i' A j < j'). Index pairs also have the convenient property

that a new incarnation of a process does not need to exactly how far the old incarnation got.

The User Tree The user tree at a process is a partial order. To sort states in this tree, we can use the

familiar tool of vector clocks, with one entry per root-leaf branch. Within any one root-leaf path in the user

tree, state indices sort user states. (If Q and R are two system states at a process with QU = RU, then the

state indices of Q and R will be the same.)

Our natural incarnation is use incarnations for vector entries, but two items require special attention:

1. If a system state AS occurs before the final rollback of a process, then branches in the tree do not yet

exist.

2. User states restored after rollback might be construed to be part of two different branches.

We resolve these difficulties by defining the canonical occurrence of a user state A to be the system-minimal

AS, and limiting our attention to canonical occurrences.

For a user state A at process p, we define the TREE-timestamp vector Vte(A) as follows. Let B be the

maximal user state at p with B - A in USER- TIME such that the canonical BS occurs in incarnation i.

Then the ith entry of Vu.,(A) equals the state index of the canonical BS. If no such B exists, then the i entry

of Vtr•(A) is 0. Straightforward integer comparisons on vector entries will determine tree precedence.

A straightforward implementation of USER- TIME timestamps using tree-vectors would require two

integers for each restart in the computation, which is unreasonably large. However, many optimizations

suggest themselves. Suppose the canonical AS occurs in incarnation j. Then the ith entry of Vt,(A.4)

will be zero for i > j, will equal the state index of A for i = j, and will be the same for all states in

incarnation j for i < j. Thus, the suffix of Vtree(A) doesn't need to be transmitted at all, and the prefix

only needs to be transmitted once per incarnation. An incremental approach would bring the information

down to constant. This is essentially the technique that Strom and Yemini use-although at the price of

having processes block if they need to perform a comparison requiring data they haveh't yet received. With

this tree-vector optimization, our timestamps are only twice as long as Strom and Yemini's: more careful

management of tree vector prefix transmission will avoid blocking (at the price of slightly longer timestamps

during recovery).

These implementations are only examples. The Vtme clocks can tolerate general partial orders, and

(without prefix removal) will function for the more general version of rollback where a process wishes to

restore a state that it had previously aborted.

6. Security and Privacy

A process can verify the passage of real time by independent physical hardware (e.g., a quartz clock).

However, more distributed, virtual models of time do not allow such independent checking. Tracking

relations in these models requires sharing private information and trusting the private information that is

shared, this trust creates the opportunity for attacks on clocks that translate to attacks on protocols. Our

distributed time framework [Sm93, Sm94] identifies these security and privacy problems and builds clocks

that protect against them. Thus, the framework allows us to design protocols in terms of our general time

formalism, and then transparently consider these security and privacy issues by installing secure and private

clocks.

6.1. Attacks

The proper functioning of vector clocks depends on the accuracy of the timestamps on messages. This

dependence creates a window for malicious (or merely faulty) processes to disrupt the vector clock protocol.

When process p in state G sends a message M to process q, it is supposed to include the timestamp vector

V(G) listing, for each process, the maximal state influencing state S. A malicious process p could lie about

its vector entries; a malicious q could use this data for purposes other than sorting states.

An Example To illustrate the security risks of vector clocks, consider an example of running a com-

modities exchange over a public network (such as the Internet). Using vector clocks to track event ordering

in such a system allows corrupt users to commit the crime of options frontrunning. Suppose a broker is

allowed to trade both for himself and for his client. If a lucky broker happens to buy a small number of

shares of an item (for example, orange futures) shortly before receiving a request from his client to buy a

large number of shares for her, then he makes a nice profit-the large purchase by his client drives up the

value of the broker's shares. This profit can motivate a corrupt broker to wait until he receives the client

request B, and then forge a purchase order A of his own that appears not to follow B. This forgery is

easy with vector clocks: the corrupt broker merely winds back the entries on the timestamp vector on .-.

(Options frontrunning occurs in the Chicago commodities exchange, and the technique the FBI uses in this

physical environment is to place undercover agents in the pits to look for such "lucky" purchases.)

We briefly identify three classes of attacks on vector clocks:

Malicious Backdating A malicious process p can fool an honest process q into thinking that a state

occurred earlier than it really did by saving and reusing old vector entries on messages that it sends.

(The options frontrunning example demonstrates this technique.)

Malicious Postdating A malicious process p can fool an honest process q into thinking that a state

occurred later than it really did by selectively advancing certain vector entries on messages that it

sends. For example, a malicious process can leak an advance copy of a public announcement merely

by postdating the timestamp vector on the leak. The recipient of this leaked announcement can act

on the advanced warning (perhaps by being the first to respond to an enclosed offer), but appear to

the rest of the system to have had the same chance as everyone else.

Compromised Privacy A malicious process p can extract information about the activities of process q

(and other processes) by examining the changes in entries of timestamp vectors on messages received

from process q. If process q is involved in two separate conversations, one with p and one with r,

process p can detect the existence of the other conversation and the identity of r. This detection may

have serious consequences-for example, retribution against whistleblowers promised anonymity.

6.2. Defenses

Signed Vectors We have identified some of the security and privacy risks associated with vector clocks,

and presented the solution of Signed Vector Timestamps [SmTy9l, see also ReGo93]. The key to this

protocol is the realization that the process p entry in any timestamp vector should originate with process p.

We use the cryptographic tool of digital signatures to prove this authorship. In a digital signature scheme,

each process knows a function that only it can compute, but that anyone can check. That is, only p can

calculate S,(A) for a given A, but anyone can examine A and Sp(A) and know that they match.

Installing and checking signatures on vectors prevents any dishonest process from advancing vector

entries for honest processes. Thus, the Signed Vector protocol allows honest processes to correctly determine

precedence when the causal path touches only honest processes. However, this protection is still not

sufficient: it still permits the three risk scenarios from Section 6.1, and it does not extend to dealing with

dependencies that do not flow according to real time.

Sealed Vectors To provide protection against the risk scenarios of Section 6.1, we have developed the

Sealed Vector Timestamp protocol [SmTy93]. This protocol uses inexpensive secure co-processors ITyYe93,

Wein87, Wein9l, WWAP91, Yee94], that can detect physical tampering and erase their memory. Although

secure co-processors provide a limited secure environment, building protocols that effectively take advantage

of this secure environment raises some subtle challenges. For example, the co-processors must maintain

communication between each other despite malicious attacks, and protocols must be designed to prevent
malicious processes from bypassing their co-processors. Through careful use of bit-secure enwrvption

[Gold89] and digital signatures, the Sealed Vector protocol forces all to consult their co-processors in order

to send and receive messages, and to generate and comparing timestamps. The Sealed Vector protocols

provides secure and private clocks for arbitrary partial orders. (The presense of covert channels will weaken

this protection, however.)

6.3. Rollback

Most existingrollback protocols use some type of vector clock to track causal dependency. These attacks

on vector clocks can be used to attack rollback protocols. For example, by hiding a dependency, a malicious

process can cause an honest one to delay rolling back. By forging a dependency, a malicious process can

cause an honest one to roll back unnecessarily. Asynchronous recovery protocols are also susceptible to

attacks based on the partial order of restart knowledge. For example, in the Strom-Yemini protocol, a

malicious process can cause an honest process to block indefinitely by sending a user message depending

on non-existent incarnations.

Our distributed time framework provides a systematic way to protect against these attacks. By its

explicit use of distributed time on both user and system levels, our new protocol is particularly prepared for

this protection. We can first design the protocol in terms of the time relations, and then transparently install

secure partial order clocks.

7. Conclusions

Existing optimistic rollback recovery protocols use various forms of partial order time to track causal

dependency on rolled-back states. Asynchronous recovery is desirable, since minimizing coordination

should minimize the computational overhead and maximize the concurrency and flexibility in the protocol.

The key to asynchronous optimistic rollback recovery is the realization that two levels of partial order time

abstraction are relevant: causal dependency on rolled-back events and potential knowledge of rollbacks.

Our distributed time framework allows us to explicitly track these two levels of time. Applying these tools

directly yields a simple optimistic rollback recovery protocol that allows completely asynchronous recovery-

while also limiting rollbacks to at most one per process after any failure. In addition, our distributed time

framework independently addresses the security and privacy issues inherent in protocols based on partial

order time. Future work includes using disributed time to explore more general versions of the rollback

problem, as well as integrating this work with checkpointing techniques and output commitment.

References

[BhLi88] B. Bhargava and S. Lian. "Independent Checkpointing and Concurrent Rollback Recovery
for Distributed Systems-An Optimistic Approach." Seventh Symposium on Reliable

Distributed Systems. 3-12. IEEE, 1988.

[BBG831 A. Borg, J. Baumbach and S. Glazer. "A Message System Supporting Fault Tolerance."

Ninth ACM Symposium on Operating Systems Principles. 90-99. 1983.

[BBGH89] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. "Fault Tolerance Under
UNIX." ACM Transactions on Computer Systems. 7 (1): 1-24. February 1989.

[EJZ92] E.N. Elnozahy, D.B. Johnson and W.Zwaenepoel. "The Performance of Consistent
Checkpointing." I 1th Symposium on Reliable Distributed Systems. IEEE, 1992.

[EIZw92] E.N. Elnozahy and W. Zwaenepoel. "Manetho: Transparent Rollback-Recovery with Low
Overhead, Limited Rollback and Fast Output Commit." IEEE Transactions on Computers.
41 (5): 526-531. May 1992

(Fi881 C.J. Fidge. "Timestamps in Message-Passing Systems That Preserve the Partial Ordering."
llth Australian Computer Science Conference. 56-67. February 1988.

[Fi911 C.J. Fidge. "Logical Time in Distributed Computing Systems." IEEE Computer 24
(8):28-33. August 1991.

[Gold89] 0. Goldreich. Foundations of Cryptology. Computer Science Department, Technion, 1989.

[Jo891 D.B. Johnson. Distributed System Fault Tolerance Using Message Logging and
Checkpointing. Ph.D. thesis, Rice University, 1989.

[JoZw90] D.B. Johnson and W. Zwaenepoel. "Recovery in Distributed Systems Using Optimistic
Message Logging and Checkpointing." Journal of Algorithms. 11: 462-49 1. September
1990.

[Jo931 D.B. Johnson. "Efficient Transparent Optimistic Rollback Recovery for Distributed
Application Programs." 13th Symposium on Reliable Distributed Systems. IEEE, October
1993.

[KoTo87] R. Koo and S. Toueg. "Checkpointing and Rollback-Recovery for Distributed Systems."
IEEE Transactions on Software Engineering. 13 (1): 23-31. January 1987.

[La78] L. Lamport. "Time, Clocks, and the Ordering of Events in a Distributed System."
Communications of the ACM. 21: 558-565. July 1978.

[LeBh88] P. Leu and B. Bhargava. "Concurrent Robust Checkpointing and Recovery in Distributed
Systems." Fourth International Conference on Data Engineering. 154-163. IEEE, 1988.

[Ma891 F Mattern. "Virtual Time and Global States of Distributed Systems." In Cosnard, et al,
ed., Parallel and Distributed Algorithms. Amsterdam: North-Holland, 1989. 215-226.

[PeKe931 S.L. Peterson. and P. Kearns. "Rollback Based on Vector Time." 12th Symposium on
Reliable Distributed Systems. IEEE, October 1993.

(PoPr83] M.L. Powell and D.L. Presotto. "Publishing: A Reliable Broadcast Communication
Mechanism." Ninth A CM Symposium on Operating Systems Principles. 100-109. 1983.

(ReGo93] M. Reiter and L. Gong. "Preventing Denial and Forgery of Causal Relationships in

Distributed Systems." 1993 IEEE Symposium on Research in Security and Privacy.

[SiKs901 M. Singhal and A.D. Kshemkalyani. An Efficient Implementation of Vector Clocks.
Computer Science Technical Report TR OSU-CISRC-I 1/90-TR34, Ohio State University.
November 1990.

[SiWe89] A.P. Sistla and J.L. Welch. "Efficient Distributed Recovery Using Message Logging."
Eighth ACM Symposium on Principles of Distributed Computing. 223-238, 1989.

[Sm931 S.W. Smith. A Theory of Distributed Time. Computer Science Technical Report CMU-CS-
93-231, Carnegie Mellon University. December 1993.

[Sm94] S.W. Smith. Secure Distributed Time for Secure Distributed Protocols. Ph.D. thesis. School
of Computer Science, Carnegie Mellon University. (In preparation, to appear in Summer
1994.)

fSmTy9l] S.W. Smith and J.D. Tygar. Signed Vector limestamps: A Secure Protocolfor Partial Order
lime. Computer Science Technical Report CMU-CS-93-1 16, Carnegie Mellon University.
October 1991; version of February 1993.

[SmTy931 S.W. Smith and J.D. Tygar. Sealed Vector Timestamps: Privacy and Integrity for Partial
Order lime. Carnegie Mellon University. November 1993.

[StYe85] R. Strom and S. Yemini. "Optimistic Recovery in Distributed Systems." ACM Transactions
on Computer Systems. 3: 204-226. August 1985.

[TyYe93] J.D. Tygar and B.S. Yee. "Dyad: A System for Using Physcially Secure Coprocessors."
Proceedings of the Joint Harvard-MIT Workshop on Technological Strategies jbr the
Protection of Intellectual Property in the Network Multimedia Environment. April 1993. (A
preliminary version is available as Computer Science Technical Report CMU-CS-9 1-140R,
Carnegie Mellon University.)

[Wein87I S.H. Weingart. "Physical Security for the MiABYSS System." IEEE Computer Society
Conference on Security and Privacy. 1987.

[Wein9l] S.H. Weingart. Physical Security Devices for Computer Subsystems: A Survey of Attacks
and Defenses. IBM, internal use only. March 1991.

[WWAP91] S.R. White, S.H. Weingart. W.C. Arnold, and E.R. Palmer. Introduction to the Citadel
Architecture: Security in Physically Exposed Environments. Technical Report, Distributed
Security Systems Group, IBM Thomas J. Watson Reaserch Center. March 199 1.

[Yee94] B.S. Yee. Using Secure Coprocessors. Ph.D. thesis, School of Computer Science, Carnegie
Mellon University. (In preparation, to appear in Spring 1994.)

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate ano Carnegie Mellon Urnversity s required riot to
discriminate m admission, employment or administraton of its programs on ihe hasis of race color
national origin, sex or handicap in violation of Title VI of the C~wl Rign~ts Act of 1964 T1tie IX of :ip
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 o' owhel fedora;
state or local laws. or executive orders

In addition. Carnegie Mellon University does not discriminate in admssion employment or adm;rns-
tration of its programs on the basis of religion, creed, ancestry heiief age. veteran status sexua
orientation or in violation of federal state or local :aws or executhve orders

Inquiries concerning application of these statements should be d'recteo to nho Provost Carneg,
Mellon University. 5000 Forbes Avenue. P,Itsburgr PA 15212. :ctzFhono (4:2) 266-6684 or the V Ce
President for Enrollment, Carnegie Mellon University. 5000 Forbes Avenue P:ttsburgh. PA 15213
telephone (412) 268-2056

